Aprende Java Aprende Php Aprende C++ Aprende HTML 5 Aprende JavaScript Aprende JSON Aprende MySQL Aprende SQLServer Aprende Visual Basic 6 Aprende PostgreSQL Aprende SQLite Aprende Redis Aprende Kotlin Aprende XML Aprende Linux VSC Aprende Wordpress Aprende Laravel Aprende VueJS Aprende JQuery Aprende Bootstrap Aprende Netbeans Aprende Android
Sigueme en Facebook Sigueme en Twitter Sigueme en Instagram Sigueme en Youtube Sigueme en TikTok Sigueme en Whatsapp
Home / Ciberseguridad / Tweetbotornot: Detección de Bots de Twitter

Tweetbotornot: Detección de Bots de Twitter

Por jc mouse viernes, noviembre 22, 2019

El modelo Tweetbotornot es un algoritmo de aprendizaje automático que se entrenó en miles de cuentas reales de bot y no bot de Twitter. Tiene en cuenta más de cien características diferentes derivadas de:

  • Atributos de nivel de usuario, por ejemplo, nombres, información de perfil como URL, descripción y ubicación, fecha de creación de la cuenta, número y tasa de estados, tweets favoritos, listas, amigos , seguidores
  • Patrones de tweets de alto nivel
  • Frecuencia, proporción y tiempo de tweets puros / originales, estados citados, retweets, número de favoritos, retweets
  • Patrones basados ​​en texto en tweets de usuarios –por ejemplo, número de hashtags, menciones y enlaces, longitud de tweets, puntuación, complejidad de palabras, etc., además de varias otras características.

El modelo está actualmente en desarrollo, fue programado por Michael W. Kearney en lenguaje R (lenguaje de programación con un enfoque al análisis estadístico), el proyecto se encuentra bajo licencia del MIT.

tweetbotornot

Las estimaciones de tweetbotornot simplemente reflejan el grado en que una cuenta determinada es similar a una cantidad de cuentas bot (automatizadas) conocidas. Este modelo proporciona pruebas de comportamientos automatizados, no humanos o no auténticos. Además, aunque la tasa de error durante la validación fue pequeña, debido a que probablemente haya muchos más no bots que bots en Twitter, el número de falsos positivos (cuentas reales no bot que reciben probabilidades de bot mayores a .50) aún puede ser relativamente grande.

En general, el modelo predeterminado es correcto el 93.8% del tiempo y  el modelo rápido es correcto el 91.9% del tiempo.

Para más información se recomienda visitar la pagina oficial del proyecto de tweetbotornot donde se podrá conocer más sobre sus características, instalación e integración con la API de Twitter. De igual forma el repositorio en Github se encuentra abierto al publico en https://github.com/mkearney/tweetbotornot

Esta disponible también una implementación online de tweetbotornot en https://mikewk.shinyapps.io/botornot/ el cual ingresando el nombre de una cuenta de Twitter te muestra las probabilidades de que sea un bot o no.

Básicamente, si se obtiene un puntaje menor a 0.5, probablemente la cuenta corresponda a una persona. Si tiene un puntaje mayor a 0.5 probablemente sea un bot.

detector de bots RRSS

Me quiero volver chango, soy un bot!!! jajaj

En conclusión, este sistema utiliza un modelo de aprendizaje automatizado para calcular la probabilidad de que un usuario sea un bot o no. Los factores utilizados para identificar el comportamiento similar al bot incluyen el número de usuarios de seguidores y cuentas seguidas, la biografía y el uso de hashtags, @ -menciones y letras mayúsculas en los últimos 100 tweets de la cuenta.

Pruebe la aplicación BotOrNot y háganos saber cualquier sorpresa en los resultados en la sección de comentarios.

enjoy!

Tags

Artículos similares

Compresión y descompresión de archivos con GZIP

En este post veremos un ejemplo de como comprimir y descomprimir archivos con el método de compresión GZIP  y el pa[...]

Efecto de explosión al abrir un JPanel

En este tutorial crearemos un interesante efecto de explosión al momento de abrir un JPanel, este efecto puede extenders[...]

Como paginar registros en Java/Access

En este post veremos una forma de realizar la paginación en una base de datos Access utilizando el lenguaje de programac[...]

Personalizar nodos de un JTree con HTML

Una clase JTree permite mostrar datos de una forma jerárquica y en realidad este objeto no contiene sus datos; es decir,[...]

Desarrollo de juegos con Libgdx y Android Studio

De las pocas herramientas disponibles entre librerías, frameworks, engines, etc para el desarrollo de videojuegos en len[...]

Curso gratuito de programación Python de Microsoft

Microsoft el gigante de la tecnología está tratando de hacer que Python sea más fácil de comprender para aquellos intere[...]